Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Transl Lung Cancer Res ; 13(2): 280-291, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38496698

ABSTRACT

Background: Limited disease (LD) small cell lung cancer (SCLC) treated with definitive concurrent chemoradiotherapy (CCRT) potentially experience disease recurrence. We investigated the feasibility of circulating-tumor DNA (ctDNA)-based genomic and fragmentome analyses to assess the risk of recurrence. Methods: Targeted sequencing was conducted using pre-treatment and on-treatment blood samples from definitive CCRT-treated patients with LD-SCLC (n=50). Based on 12-month recurrence-free survival (RFS), patients were categorized into persistent-response (PeR, n=29) and non-PeR (n=21) groups. Fragmentome analysis was conducted using ctDNA fragments of different lengths: P1 (100-155 bp) and P2 (160-180 bp). Results: Patients with TP53 (n=15) and RB1 (n=11) mutation in on-treatment samples demonstrated significantly shorter RFS than patients with wild-type (WT) (P=0.05, P=0.0014, respectively). Fragmentome analysis of all available on-treatment samples (n=26) revealed that the non-PeR group (n=10) had a significantly higher P1 range (P=0.003) and lower P2 range (P=0.002). The areas under the curves for P1, P2, and the fragmentation ratio (P1/P2) in distinguishing the PeR and non-PeR were 0.850, 0.725, and 0.900, respectively. Using optimal cut-off, longer RFSs were found with the low-fragmentation-ratio group than with the high-fragmentation-ratio group (not reached vs. 7.6 months, P=0.002). Patients with both WT RB1 and a low-fragmentation-ratio (n=10) showed better outcomes than patients with both mutated RB1 and a high-fragmentation-ratio (n=10; hazard ratio, 7.55; 95% confidence interval: 2.14-26.6; P=0.002). Conclusions: RB1 mutations and high fragmentation ratios correlated with early disease recurrence. Analyzing ctDNA could help in predicting early treatment failure and making clinical decisions for high-risk patients.

2.
Cell Rep ; 42(7): 112778, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37453058

ABSTRACT

The regulatory effect of non-coding large-scale structural variations (SVs) on proto-oncogene activation remains unclear. This study investigated SV-mediated gene dysregulation by profiling 3D cancer genome maps from 40 patients with colorectal cancer (CRC). We developed a machine learning-based method for spatial characterization of the altered 3D cancer genome. This revealed a frequent establishment of "de novo chromatin contacts" that can span multiple topologically associating domains (TADs) in addition to the canonical TAD fusion/shuffle model. Using this information, we precisely identified super-enhancer (SE)-hijacking and its clonal characteristics. Clonal SE-hijacking genes, such as TOP2B, are recurrently associated with cell-cycle/DNA-processing functions, which can potentially be used as CRC prognostic markers. Oncogene activation and increased drug resistance due to SE-hijacking were validated by reconstructing the patient's SV using CRISPR-Cas9. Collectively, the spatial and clonality-resolved analysis of the 3D cancer genome reveals regulatory principles of large-scale SVs in oncogene activation and their clinical implications.


Subject(s)
Colorectal Neoplasms , Genome , Humans , Prognosis , Chromatin , DNA , Colorectal Neoplasms/genetics
3.
Br J Cancer ; 129(2): 374-381, 2023 08.
Article in English | MEDLINE | ID: mdl-37280413

ABSTRACT

BACKGROUND: Postoperative minimal residual disease (MRD) detection using circulating-tumour DNA (ctDNA) requires a highly sensitive analysis platform. We have developed a tumour-informed, hybrid-capture ctDNA sequencing MRD assay. METHODS: Personalised target-capture panels for ctDNA detection were designed using individual variants identified in tumour whole-exome sequencing of each patient. MRD status was determined using ultra-high-depth sequencing data of plasma cell-free DNA. The MRD positivity and its association with clinical outcome were analysed in Stage II or III colorectal cancer (CRC). RESULTS: In 98 CRC patients, personalised panels for ctDNA sequencing were built from tumour data, including a median of 185 variants per patient. In silico simulation showed that increasing the number of target variants increases MRD detection sensitivity in low fractions (<0.01%). At postoperative 3-week, 21.4% of patients were positive for MRD by ctDNA. Postoperative positive MRD was strongly associated with poor disease-free survival (DFS) (adjusted hazard ratio 8.40, 95% confidence interval 3.49-20.2). Patients with a negative conversion of MRD after adjuvant therapy showed significantly better DFS (P < 0.001). CONCLUSION: Tumour-informed, hybrid-capture-based ctDNA assay monitoring a large number of patient-specific mutations is a sensitive strategy for MRD detection to predict recurrence in CRC.


Subject(s)
Circulating Tumor DNA , Colorectal Neoplasms , Humans , Circulating Tumor DNA/genetics , Neoplasm, Residual/genetics , Disease-Free Survival , Mutation , Biomarkers, Tumor/genetics , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics
4.
Int J Cancer ; 153(3): 571-583, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37194418

ABSTRACT

Emerging new mutations after treatment can provide clues to acquired resistant mechanisms. Circulating tumor DNA (ctDNA) sequencing has enabled noninvasive repeated tumor mutational profiling. We aimed to investigate newly emerging mutations in ctDNA after disease progression in metastatic colorectal cancer (mCRC). Blood samples were prospectively collected from mCRC patients receiving palliative chemotherapy before treatment and at radiological evaluations. ctDNA from pretreatment and progressive disease (PD) samples were sequenced with a next-generation sequencing panel targeting 106 genes. A total of 712 samples from 326 patients were analyzed, and 381 pretreatment and PD pairs (163 first-line, 85 second-line and 133 later-line [≥third-line]) were compared. New mutations in PD samples (mean 2.75 mutations/sample) were observed in 49.6% (189/381) of treatments. ctDNA samples from later-line had more baseline mutations (P = .002) and were more likely to have new PD mutations (adjusted odds ratio [OR] 2.27, 95% confidence interval [CI]: 1.40-3.69) compared to first-line. RAS/BRAF wild-type tumors were more likely to develop PD mutations (adjusted OR 1.87, 95% CI: 1.22-2.87), independent of cetuximab treatment. The majority of new PD mutations (68.5%) were minor clones, suggesting an increasing clonal heterogeneity after treatment. Pathways involved by PD mutations differed by the treatment received: MAPK cascade (Gene Ontology [GO]: 0000165) in cetuximab and regulation of kinase activity (GO: 0043549) in regorafenib. The number of mutations revealed by ctDNA sequencing increased during disease progression in mCRC. Clonal heterogeneity increased after chemotherapy progression, and pathways involved were affected by chemotherapy regimens.


Subject(s)
Circulating Tumor DNA , Colonic Neoplasms , Colorectal Neoplasms , Rectal Neoplasms , Humans , Circulating Tumor DNA/genetics , Cetuximab/therapeutic use , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Disease Progression , Mutation , Biomarkers, Tumor/genetics , DNA Mutational Analysis
5.
Cancer Res Treat ; 55(3): 927-938, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36915247

ABSTRACT

PURPOSE: Circulating tumor DNA (ctDNA) is emerging as a valuable non-invasive tool to identify tumor heterogeneity and tumor burden. This study investigated ctDNA dynamics in metastatic colorectal cancer patients treated with regorafenib. Materials and Methods: In this prospective biomarker study, plasma cell-free DNA (cfDNA) samples obtained at baseline, at the first response evaluation after 2 cycles of treatment, and at the time of progressive disease were sequenced using a targeted next-generation sequencing platform which included 106 genes. RESULTS: A total of 285 blood samples from 110 patients were analyzed. Higher baseline cfDNA concentration was associated with worse progression-free survival (PFS) and overall survival (OS). After 2 cycles of treatment, variant allele frequency (VAF) in the majority of ctDNA mutations decreased with a mean relative change of -31.6%. Decreases in the VAF of TP53, APC, TCF7L2, and ROS1 after 2 cycles of regorafenib were associated with longer PFS. We used the sum of VAF at each time point as a surrogate for the overall ctDNA burden. A reduction in sum (VAF) of ≥ 50% after 2 cycles was associated with longer PFS (6.1 vs. 2.7 months, p=0.002), OS (11.3 vs. 5.9 months, p=0.001), and higher disease control rate (86.3% vs. 51.1%, p < 0.001). VAF of the majority of the ctDNA mutations increased at the time of disease progression, and VAF of BRAF increased markedly. CONCLUSION: Reduction in ctDNA burden as estimated by sum (VAF) could be used to predict treatment outcome of regorafenib.


Subject(s)
Cell-Free Nucleic Acids , Circulating Tumor DNA , Colonic Neoplasms , Colorectal Neoplasms , Rectal Neoplasms , Humans , Circulating Tumor DNA/genetics , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Proteins/genetics , Treatment Outcome , Colonic Neoplasms/pathology , Biomarkers, Tumor/genetics , Mutation , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics
6.
Cancer Res Treat ; 55(3): 1048-1052, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36731462

ABSTRACT

Poly(ADP-ribose) polymerase inhibitors have been shown dramatic responses in patients with BRCAness. However, clinical studies have been limited to breast cancer patients with germline mutations. Here, we describe a patient with metastatic breast cancer who had a rare BRCA1 somatic mutation (BRCA1 c.4336G>T (p.E1446*)) detected by cell-free DNA analysis after failing standard therapies. This tier III variant of unknown significance was predicted to be a pathogenic variant in our assessment, leading us to consider off-label treatment with olaparib. The patient responded well to olaparib for several months, with a decrease in allele frequency of this BRCA1 somatic mutation in cell-free DNA. Olaparib resistance subsequently developed with an increase in the allele frequency and new BRCA1 reversion mutations. To our knowledge, this is the first report confirming BRCA1 c.4336G>T (p.E1446*) as a mutation sensitive to olaparib in breast cancer and describing the dynamic changes in the associated mutations using liquid biopsy.


Subject(s)
Breast Neoplasms , Cell-Free Nucleic Acids , Circulating Tumor DNA , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Circulating Tumor DNA/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Mutation , Cell-Free Nucleic Acids/therapeutic use
7.
Osong Public Health Res Perspect ; 13(4): 252-262, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36097747

ABSTRACT

OBJECTIVES: Real-time polymerase chain reaction is currently used as a confirmatory test for coronavirus disease 2019 (COVID-19). The test results are interpreted as positive, negative, or inconclusive, and are used only for a qualitative classification of patients. However, the test results can be quantitated using threshold count (Ct) values to determine the amount of virus present in the sample. Therefore, this study investigated the diagnostic usefulness of Ct results through various quantitative analyzes, along with an analysis of clinical and epidemiological characteristics. METHODS: Clinical and epidemiological data from 4,642 COVID-19 patients in April 2021 were analyzed, including the Ct values of the RNA-dependent RNA polymerase (RdRp), envelope (E), and nucleocapsid (N) genes. Clinical and epidemiological data (sex, age, underlying diseases, and early symptoms) were collected through a structured questionnaire. A correlation analysis was used to examine the relationships between variables. RESULTS: All 3 genes showed statistically significant relationships with symptoms and severity levels. The Ct values of the RdRp gene decreased as the severity of the patients increased. Moreover, statistical significance was observed for the presence of underlying diseases and dyspnea. CONCLUSION: Ct values were found to be related to patients' clinical and epidemiological characteristics. In particular, since these factors are closely related to symptoms and severity, Ct values can be used as primary data for predicting patients' disease prognosis despite the limitations of this method. Conducting follow-up studies to validate this approach might enable using the data from this study to establish policies for preventing COVID-19 infection and spread.

8.
Br J Cancer ; 127(5): 898-907, 2022 09.
Article in English | MEDLINE | ID: mdl-35643791

ABSTRACT

BACKGROUND: Circulating tumour DNA (ctDNA) has been spotlighted as an attractive biomarker because of its easy accessibility and real-time representation of tumour genetic profile. However, the clinical utility of longitudinal ctDNA monitoring has not been clearly defined. METHODS: Serial blood samples were obtained from metastatic colorectal cancer patients undergoing first-line chemotherapy. ctDNA was sequenced using a targeted next-generation sequencing platform which included 106 genes. Changes in ctDNA profile and treatment outcome were comprehensively analysed. RESULTS: A total of 272 samples from 62 patients were analysed. In all, 90.3% of patients had detectable ctDNA mutation before treatment. ctDNA clearance after chemotherapy was associated with longer progression-free survival which was independent of radiological response (adjusted hazard ratio 0.22, 95% confidence interval 0.10-0.46). Longitudinal monitoring was able to detect ctDNA progression which preceded radiological progressive disease (PD) in 58.1% (median 3.3 months). Diverse resistant mutations (34.9%) and gene amplification (7.0%) at the time of PD were discovered. For 16.3% of the PD patients, the newly identified mutations could be potential candidates of targeted therapy or clinical trial. CONCLUSION: ctDNA profile provided a more accurate landscape of tumour and dynamic changes compared to radiological evaluation. Longitudinal ctDNA monitoring may improve personalised treatment decision-making.


Subject(s)
Circulating Tumor DNA , Colonic Neoplasms , Colorectal Neoplasms , Rectal Neoplasms , Biomarkers, Tumor/genetics , Circulating Tumor DNA/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , DNA, Neoplasm/genetics , Humans , Mutation
9.
Oncogene ; 41(14): 2026-2038, 2022 04.
Article in English | MEDLINE | ID: mdl-35173310

ABSTRACT

The emergence of RAS/RAF mutant clone is the main feature of EGFR inhibitor resistance in KRAS wild-type colon cancer. However, its molecular mechanism is thought to be multifactorial, mainly due to cellular heterogeneity. In order to better understand the resistance mechanism in a single clone level, we successfully isolated nine cells with cetuximab-resistant (CR) clonality from in vitro system. All CR cells harbored either KRAS or BRAF mutations. Characteristically, these cells showed a higher EMT (Epithelial to mesenchymal transition) signature, showing increased EMT markers such as SNAI2. Moreover, the expression level of CXCL1/5, a secreted protein, was significantly higher in CR cells compared to the parental cells. In these CR cells, CXCL1/5 expression was coordinately regulated by SNAI2/NFKB and transactivated EGFR through CXCR/MMPI/EGF axis via autocrine singling. We also observed that combined cetuximab/MEK inhibitor not only showed growth inhibition but also reduced the secreted amounts of CXCL1/5. We further found that serum CXCL1/5 level was positively correlated with the presence of RAS/RAF mutation in colon cancer patients during cetuximab therapy, suggesting its role as a biomarker. These data indicated that the application of serum CXCL1/5 could be a potential serologic biomarker for predicting resistance to EGFR therapy in colorectal cancer.


Subject(s)
Colorectal Neoplasms , Epithelial-Mesenchymal Transition , Cetuximab/therapeutic use , Chemokine CXCL1/genetics , Chemokine CXCL1/metabolism , Chemokine CXCL5/genetics , Chemokine CXCL5/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Drug Resistance, Neoplasm/genetics , ErbB Receptors/antagonists & inhibitors , Humans , Mutation , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/genetics
10.
Nano Lett ; 21(21): 9061-9068, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34672610

ABSTRACT

Cell-free DNA (cfDNA) analysis, specifically circulating tumor DNA (ctDNA) analysis, provides enormous opportunities for noninvasive early assessment of cancers. To date, PCR-based methods have led this field. However, the limited sensitivity/specificity of PCR-based methods necessitates the search for new methods. Here, we describe a direct approach to detect KRAS G12D mutated genes in clinical ctDNA samples with the utmost LOD and sensitivity/specificity. In this study, MutS protein was immobilized on the tip of an atomic force microscope (AFM), and the protein sensed the mismatched sites of the duplex formed between the capture probe on the surface and mutated DNA. A noteworthy LOD (3 copies, 0.006% allele frequency) was achieved, along with superb sensitivity/specificity (100%/100%). These observations demonstrate that force-based AFM, in combination with the protein found in nature and properly designed capture probes/blockers, represents an exciting new avenue for ctDNA analysis.


Subject(s)
Circulating Tumor DNA , Neoplasms , Biomarkers, Tumor/genetics , Circulating Tumor DNA/genetics , Humans , Mutation , Point Mutation , Sensitivity and Specificity
11.
Sci Rep ; 11(1): 16333, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34381078

ABSTRACT

Circulating tumor DNA (ctDNA) may reveal dynamic tumor status during therapy. We conducted serial ctDNA analysis to investigate potential association with clinical outcome in metastatic colorectal cancer (mCRC) patients receiving chemotherapy. Tissue KRAS/NRAS wild-type mCRC patients were enrolled and treated with first-line cetuximab-containing chemotherapy. ctDNA isolated from plasma were analyzed by next generation sequencing (NGS) with 16 targeted gene panel. Among 93 patients, 84 (90.3%) had at least 1 somatic mutation in baseline ctDNA samples (average 2.74). Five patients with KRAS or NRAS hotspot mutation in the ctDNA showed significantly worse progression-free survival (PFS) (p = 0.029). Changes in average variant allele frequency (VAF) in ctDNA showed significant correlation with tumor size change at the time of first response evaluation (p = 0.020) and progressive disease (PD) (p = 0.042). Patients whose average VAF decreased below cutoff (< 1%) at the first evaluation showed significantly better PFS (p < 0.001), and the average VAF change further discriminated the PFS in the patients in partial response (p = 0.018). At the time of PD, 54 new mutations including KRAS and MAP2K1 emerged in ctDNA. ctDNA sequencing can provide mutation profile that could better reflect tumor mutation status and predict treatment outcome.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Circulating Tumor DNA/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Antineoplastic Agents, Immunological/therapeutic use , Cetuximab/therapeutic use , Circulating Tumor DNA/blood , Colorectal Neoplasms/blood , ErbB Receptors/metabolism , Female , Gene Frequency/drug effects , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Middle Aged , Mutation/drug effects , Progression-Free Survival , ras Proteins/genetics
12.
PLoS One ; 15(5): e0232754, 2020.
Article in English | MEDLINE | ID: mdl-32379795

ABSTRACT

Analyzing cell-free DNA (cfDNA) as a source of circulating tumor DNA is useful for diagnosing or monitoring patients with cancer. However, the concordance between cfDNA within liquid biopsy and genomic DNA (gDNA) within tumor tissue biopsy is still under debate. To evaluate the concordance in a clinical setting, we enrolled 54 patients with metastatic colorectal cancer and analyzed their plasma cfDNA, gDNA from peripheral blood mononuclear cells (PBMC), and gDNA from available matched tumor tissues using ultra-deep sequencing targeting 10 genes (38-kb size) recurrently mutated in colorectal cancer. We first established a highly reliable cut-off value using reference material. The sensitivity of detecting KRAS hotspot mutations in plasma was calculated as 100%, according to digital droplet PCR. We could selectively detect clinically important somatic alterations with a variant allele frequency as low as 0.18%. We next compared somatic mutations of the 10 genes between cfDNA and genomic DNA from tumor tissues and observed an overall 93% concordance rate between the two types of samples. Additionally, the concordance rate of patients with the time interval between liquid biopsy and tumor tissue biopsy within 6 months and no prior exposure to chemotherapy was much higher than those without. The patients with KRAS mutant fragments in plasma had poor prognosis than those without the mutant fragments (33 months vs. 63 months; p<0.05). Consequently, the profiling with our method could achieve highly concordant results and may facilitate the surveillance of the tumor status with liquid biopsy in CRC patients.


Subject(s)
Cell-Free Nucleic Acids/genetics , Circulating Tumor DNA/genetics , Colorectal Neoplasms/genetics , Adult , Aged , Colorectal Neoplasms/pathology , Female , High-Throughput Nucleotide Sequencing , Humans , Liquid Biopsy , Liver Neoplasms/genetics , Liver Neoplasms/secondary , Lung Neoplasms/genetics , Lung Neoplasms/secondary , Male , Middle Aged , Mutation , Neoplasm Metastasis/genetics , Proto-Oncogene Proteins p21(ras)/genetics
13.
Diagnostics (Basel) ; 11(1)2020 Dec 31.
Article in English | MEDLINE | ID: mdl-33396258

ABSTRACT

Cancer tissues have characteristic DNA methylation profiles compared with their corresponding normal tissues that can be utilized for cancer diagnosis with liquid biopsy. Using a genome-scale DNA methylation approach, we sought to identify a panel of DNA methylation markers specific for cell-free DNA (cfDNA) from patients with colorectal cancer (CRC). By comparing DNA methylomes between CRC and normal mucosal tissues or blood leukocytes, we identified eight cancer-specific methylated loci (ADGRB1, ANKRD13, FAM123A, GLI3, PCDHG, PPP1R16B, SLIT3, and TMEM90B) and developed a five-marker panel (FAM123A, GLI3, PPP1R16B, SLIT3, and TMEM90B) that detected CRC in liquid biopsies with a high sensitivity and specificity with a droplet digital MethyLight assay. In a set of cfDNA samples from CRC patients (n = 117) and healthy volunteers (n = 60), a panel of five markers on the platform of the droplet digital MethyLight assay detected stages I-III and stage IV CRCs with sensitivities of 45.9% and 95.7%, respectively, and a specificity of 95.0%. The number of detected markers was correlated with the cancer stage, perineural invasion, lymphatic emboli, and venous invasion. Our five-marker panel with the droplet digital MethyLight assay showed a high sensitivity and specificity for the detection of CRC with cfDNA samples from patients with metastatic CRC.

14.
Ann Surg Oncol ; 25(11): 3389-3395, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30062471

ABSTRACT

BACKGROUND: There is a close link between Fusobacterium nucleatum and colorectal cancer (CRC) tumorigenesis and chemoresistance. However, the genetic characteristics and clinical significance of CRC related with F. nucleatum remains unclear. This study evaluated the relationship between F. nucleatum, pathway mutation, and patient prognosis. METHODS: Fusobacterium nucleatum amount in the tumor tissue and adjacent normal tissue were measured by quantitative polymerase chain reaction in adjuvant (N = 128) and metastatic (N = 118) cohorts. Patients were divided into binary (F. nucleatum-high and F. nucleatum-low) according to F. nucleatum amount. Targeted next-generation sequencing of 40 genes included in the 5 critical pathways (WNT, P53, RTK-RAS, PI3 K, and TGF-ß) was performed in the adjuvant cohort. RESULTS: Patients with MSI-H and CIMP-H had higher amount of F. nucleatum in tumor tissue. Fusobacterium nucleatum-high patients had higher rates of transition mutation and C to T (G to A) nucleotide change regardless of MSI status. In addition, mutation rate of AMER1 and ATM genes, and TGF-ß pathway was higher in F. nucleatum-high patients. Fusobacterium nucleatum-high was associated with poor overall survival (OS) in the palliative cohort (26.4 vs. 30.7 months, p = 0.042). Multivariate analysis revealed F. nucleatum-high as an independent negative prognostic factor for OS [adjusted hazard ratio of 1.69 (95% confidence interval 1.04-2.75), p = 0.034]. However, F. nucleatum amount was not associated with recurrence in the adjuvant cohort. CONCLUSIONS: F. nucleatum-high was associated with poor survival in metastatic CRC. In addition, we identified mutational characteristics of colorectal cancer according to F. nucleatum amount.


Subject(s)
Biomarkers, Tumor/genetics , Colorectal Neoplasms/genetics , Fusobacterium Infections/genetics , Fusobacterium nucleatum/pathogenicity , Gene Expression Profiling , Mutation , Signal Transduction , Aged , Case-Control Studies , Cohort Studies , Colorectal Neoplasms/microbiology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/therapy , Combined Modality Therapy , DNA Methylation , Female , Follow-Up Studies , Fusobacterium Infections/microbiology , Humans , Male , Microsatellite Instability , Prognosis , Real-Time Polymerase Chain Reaction , Survival Rate
15.
Cancer Res Treat ; 49(4): 1077-1087, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28161934

ABSTRACT

PURPOSE: RNA editing generates protein diversity by altering RNA sequences in coding regions without changing the overall DNA sequence. Adenosine-to-inosine (A-to-I) RNA editing events have recently been reported in some types of cancer, but they are rare in human colorectal cancer (CRC). Therefore, this study was conducted to identify diverse RNA editing in CRC. MATERIALS AND METHODS: We compared transcriptome data of 39 CRC samples and paired adjacent tissues from The Cancer Genome Atlas database to identify RNA editing patterns in CRC, focusing on canonical A-to-I RNA edits in coding sequence regions. We investigated nonsynonymous RNA editing patterns by comparing tumor and normal tissue transcriptome data. RESULTS: The number of RNA edits varied from 12 to 42 per sample. We also observed that hypoand hyper-RNA editing patterns were distinguishable within the samples. We found 10 recurrent nonsynonymous RNA editing candidates in nine genes (PDLIM, NEIL1, SRP9, GLI1, APMAP, IGFBP7, ZNF358, COPA, and ZNF587B) and validated some by Sanger sequencing and the inosine chemical erasing assay. We further showed that editing at these positions was performed by the adenosine deaminase acting on RNA 1 enzyme. Most of these genes are hypoedited in CRC, but editing of GLI1 was increased in cancer tissues compared with normal tissues. CONCLUSION: Our results show that nonsynonymous RNA editing patterns can be used to identify CRC patients and could serve as novel biomarkers for CRC.


Subject(s)
Adenosine/genetics , Colorectal Neoplasms/genetics , Inosine/genetics , RNA Editing , Biomarkers, Tumor , Cell Line, Tumor , Colorectal Neoplasms/pathology , Gene Expression Profiling , Humans , Reproducibility of Results , Sequence Analysis, DNA , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...